Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility
نویسندگان
چکیده
Newt eosinophils are motile granulated leukocytes that uniquely display a highly visible centrosomal area. Electron microscope and tubulin antibody fluorescence confirms the presence of centrioles, pericentriolar material, and radiating microtubules within this visible area. Actin antibodies intensely stain the advancing cell edges and tail but only weakly stain pseudopods being withdrawn into the cell. Randomly activated eosinophils follow a roughly consistent direction with an average rate of 22.5 micron/min. The position of the centrosome is always located between the trailing cell nucleus and advancing cell edge. If the cell extends more than one pseudopod, the one closest to or containing the centrosome is always the one in which motility continues. Laser irradiation of the visible centrosomal area resulted in rapid cell rounding. After several minutes following irradiation, most cells flattened and movement continued. However, postirradiation motility was uncoordinated and directionless , and the rate decreased to an average of 14.5 micron/min. Electron microscopy and tubulin immunofluorescence indicated that an initial disorganization of microtubules resulted from the laser microirradiations . After several minutes, organized microtubules reappeared, but the centrioles appeared increasingly damaged. The irregularities in motility due to irradiation are probably related to the damaged centrioles. The results presented in this paper suggest that the centrosome is an important structure in controlling the rate and direction of newt eosinophil motility.
منابع مشابه
P-61: Effect of 830 nm Diode LASER Irradiation on Human Sperm Motility
Background Sperm motility is known as an effective parameter in male fertility and it depends on energy consumption. Low level LASER irradiation could increases energy supply to the cell by producing of adenosine triphosphate (ATP). The purpose of this study is to evaluate how the low level LASER irradiation affects the human sperm motility. MaterialsAndMethods Fresh human semen specimens of as...
متن کاملEffect of Helium-Neon Laser Irradiation on Motility and Ultrastructure of Fresh and Frozen-Thawed Human Sperm
Purpose: Semen freezing is an important technique in human infertility treatment in many different patients but it damages sperms. Low-power lasers are physical agents that have biostimulatory effects. In this study, low-power helium-neon laser's (16J/cm2, one time irradiation) effect on motility and ultrastructure of fresh and frozen-thawed human sperm were studied. Materials and Methods: Thi...
متن کامل3D-structured illumination microscopy provides novel insight into architecture of human centrosomes
Centrioles are essential for the formation of cilia and flagella. They also form the core of the centrosome, which organizes microtubule arrays important for cell shape, polarity, motility and division. Here, we have used super-resolution 3D-structured illumination microscopy to analyse the spatial relationship of 18 centriole and pericentriolar matrix (PCM) components of human centrosomes at d...
متن کاملDrosophila Ana1 is required for centrosome assembly and centriole elongation
Centrioles organise centrosomes and cilia, and these organelles have an important role in many cell processes. In flies, the centriole protein Ana1 is required for the assembly of functional centrosomes and cilia. It has recently been shown that Cep135 (also known as Bld10) initially recruits Ana1 to newly formed centrioles, and that Ana1 then recruits Asl (known as Cep152 in mammals) to promot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 98 شماره
صفحات -
تاریخ انتشار 1984